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Throughout the United States and Europe, demand for airport use has been increasing rapidly, while airport capacity has been
stagnating. Over the last ten years the number of passengers has increased by more than 50 percent and is expected to continue
increasing at this rate. Acute congestion in many major airports has been the unfortunate result. For U.S. airlines, the expected
yearly cost of the resulting delays is currently estimated at $3 billion. In order to put this number in perspective, the total reported
losses of all U.S. airlines amounted to approximately $2 billion in 1991 and $2.5 billion in 1990. Furthermore, every day 700 to 1100
flights are delayed by 15 minutes or more. European airlines are in a similar plight. Optimally controlling the flow of aircraft either
by adjusting their release times into the network (ground-holding) or their speed once they are airborne is a cost effective method to
reduce the impact of congestion on the air traffic system. This paper makes the following contributions: (a) we build a model that
takes into account the capacities of the National Airspace System (NAS) as well as the capacities at the airports, and we show that
the resulting formulation is rather strong as some of the proposed inequalitics are facet defining for the convex hull of solutions; (b)
we address the complexity of the problem; (c) we extend that model to account for several variations of the basic problem, most
notably, how to reroute flights and how to handle banks in the hub and spoke system; (d) we show that by relaxing some of our
constraints we obtain a previously addressed problem and that the LP relaxation bound of our formulation is at least as strong when
compared to all others proposed in the literature for this problem; and (e) we solve large scale, realistic size problems with several

thousand flights.

hroughout the United States and Europe, demand for

airport use has been increasing rapidly during recent
years, while airport capacity has been stagnating. Over the
last ten years the number of passengers has increased by
more than 50 percent and is expected to continue increas-
ing at this rate, while no appreciable increase in capacity is
expected. Acute congestion in many major airports has
been the unfortunate result. For U.S. airlines, the expected
yearly cost of the resulting delays is currently estimated at
$3 billion. In order to put this number in perspective, the
total reported losses of all U.S. airlines amounted to ap-
proximately $2 billion in 1991 and $2.5 billion in 1990.
Furthermore, every day 700 to 1100 flights are delayed by
15 minutes or more. European airlines are in a similar
plight. Thus, congestion is a problem of undeniable practi-
cal significance.

Faced with the realities of congestion, the FAA has
been using ground-holding policies to reduce delay costs.
These short-term policies consider airport capacities and
flight schedules as fixed for a given time period, and adjust
the flow of aircraft on a real time basis by imposing
“ground holds” on certain flights. Such a flight is then held
on the ground at its departure airport even if it is other-
wise ready for takeoff. Ground-holding makes sense in the
following situation. Suppose it has been determined that if
an aircraft departs on time, then it will encounter conges-
tion, incurring an airborne delay as it awaits landing clear-
ance at its destination airport. However, by delaying its
departure, the aircraft will arrive at its destination at a
later time when minimal congestion is expected, thus, in-
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curring no airborne delay. Therefore, the objective of
ground-holding policies is to “translate” anticipated air-
borne delays to the ground.

The effectiveness of ground-holding policies lies in the
following two fundamental facts. First, while a flight is
airborne it incurs costs such as fuel and safety costs that
are not applicable before the flight takes off. These costs
make airborne delays much costlier than ground delays.
Second, airport capacity is highly variable due to its heavy
dependence on the weather (visibility, wind, precipitation,
cloud ceiling). It is not unusual for the capacity of an
airport to be reduced by 50 percent in inclement weather.
Given these two facts, there is significant potential to re-
duce costs when adjusting aircraft flow as weather (hence
airport capacity) forecasts change in such a way that
ground delays are substituted for the much costlier air-
borne delays.

Currently, the FAA implements a national ground-
holding policy. This policy uses a computerized procedure
based on a first-come, first-served rule, in order to select
appropriate ground-holds. These selections are further en-
hanced through the experience of its air traffic controllers.
In the last decade, several models have been developed
that use optimization techniques to improve upon current
practices. We will briefly review these developments.

A Taxonomy of Models. In Odoni (1987), the problem of
scheduling flights in real time in order to minimize conges-
tion costs was first conceptualized and introduced. Since
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then several models have been proposed for solving differ-
ent versions of this problem. The first and simplest version
considers a single airport and makes decisions about the
ground-holds for this Single-Airport Problem (SAGHP).
The Multi-Airport Ground-Holding Problem (MAGHP) was
the next problem to be introduced. It makes ground-
holding decisions for an entire network of airports. Thus,
the SAGHP and the MAGHP are distinguished by
whether delays are assumed to propagate in the network
of airports as aircraft perform consecutive flights. Besides
determining release times for aircraft (ground-holding),
the Air Traffic Flow Management Problem (TFMP) also de-
termines the optimal speed adjustment of aircraft while
airborne for a network of airports taking into account the
capacitated airspace. Thus, the TFMP determines how to
control a flight throughout its duration, not simply before
its departure. If we add the final complication, rerouting of
flights due to drastic fluctuations in the available capacity
of airspace regions, we obtain the Air Traffic Flow Manage-
ment Rerouting Problem (TFMRP). In this problem, a flight
may be rerouted through a different flight path in order to
reach its destination if the current route passes through a
region that is unusable for reasons usually related to poor
weather conditions. In order to describe the work on these
problems we consider the following modeling variations:

1. Deterministic vs. stochastic models, which are distin-
guished by whether the capacities of the system (airports
and sectors in the airspace) are assumed deterministic or
probabilistic.

2. Static vs. dynamic models, which are distinguished by
whether or not the solutions are updated dynamically dur-
ing the day.

The deterministic SAGHP (both static and dynamic)
was first formulated as a network flow problem in Terrab
and Odoni (1991). The stochastic SAGHP was formulated
and solved as a stochastic programming problem in Rich-
etta and Odoni (1993) (the static case) and Richetta and
Odoni (1994) (the dynamic case). A review of optimization
models for the SAGHP is given in Andreatta et al. (1993).
The deterministic MAGHP was formulated as a 0-1 inte-
ger programming problem in Vranas et al. (1994a) (the
static case) and in Vranas et al. (1994b) (the dynamic
case). Terrab and Paulose (1993) address the stochastic
MAGHTP as a stochastic programming problem.

In this paper we present a 0-1 integer programming
model for the deterministic, multiairport TFMP that ad-
dresses capacity restrictions on the en route airspace. Si-
multaneously with our work, models addressing enroute
capacities were also introduced by Lindsay et al. (1993).
They propose integer programming formulations for a ver-
sion of TFMP that tracks a flight as it passes from fix to fix
in the airspace. As the linear programming relaxations of
these formulations are not very strong, branch and bound
is needed to generate integral solutions. However, by de-
veloping a wide array of novel formulation strengthening
techniques, the dependence on “pure” branch and bound,
as well as the computation times, are actually reduced.
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Helme (1994) has presented a method for the TFMP by
designing a multicommodity minimum cost flow model
over a network in space-time. To our knowledge, this method
has not been fully tested, but it is expected that there will be
severe dimensionality problems. To the best of our knowl-
edge the TFMRP has not previously been addressed.

Contribution of This Work. We feel that our work makes
the following contributions:

1. In the last fifteen years the field of polyhedral combi-
natorics has demonstrated that the key to solving large
scale integer programming problems is to obtain strong
formulations, which include facets of the convex hull of
solutions. Our success in solving large scale, practical size
instances of the TFMP lies exactly on this principle. We
propose an integer programming model for the TFMP
which is rather strong as some of the proposed inequalities
are facet defining for the convex hull of solutions.

2. We address the complexity of the TFMP and show
that it is NP-hard.

3. We illustrate how our models can be adjusted to ac-
count for several variations in the problem’s characteristics,
most notably how to handle banks in the hub and spoke
system and how to reroute flights (the TFMRP problem).

4. When specialized for the MAGHP, we prove that the
LP relaxation bound of our formulation is at least as
strong when compared to all others proposed in the liter-
ature. As our model gives solutions that were almost al-
ways integral experimentally, there is no need for rounding
heuristics that were used in Vranas et al. (1994a).

5. The solutions of the LP relaxation of the TFMP were
almost always integral, so there was no need to branch and
bound. In essense, our formulations reduce the problem to
efficiently solving large scale linear programming prob-
lems. As a result, the computation times were reasonably
small for large scale, realistic size problems involving thou-
sands of flights. Short computational times and integrality
properties are particularly important, since these models
are intended to be used on-line and solved repeatedly dur-
ing a day.

The paper is structured as follows. In Section 1 we for-
mally introduce the TFMP and present our formulation. In
Section 2 we address the complexity of the TFMP. In Sec-
tion 3 we address modeling variations for the TFMP. In
Section 4 we examine the theoretical properties of our
formulation, proving that the proposed constraints are
facet defining providing insights on the excellent computa-
tional performance. In Section 5 we report computational
results and in Section 6 we include some concluding re-
marks and directions of future research. We include some
technical proofs in the appendices.

1. THE AIR TRAFFIC FLOW MANAGEMENT
PROBLEM FORMULATION

The National Airspace System (NAS) is divided into sec-
tors. A map of the United States that displays all of the
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Figure 1. U.S. map with sector regions.

sector boundaries is given in Figure 1. Each flight passes
through contiguous sectors while it is en route to its desti-
nation. There is a restriction on the number of airplanes
that may fly within a sector at a given time. This number is
dependent on the number of aircraft that an air traffic
controller can manage at one time, the geographic loca-
tion, and the weather conditions. We will refer to the re-
strictions on the number of aircraft in a given sector at a
given time as the en route sector capacities. There are
several key sectors throughout the United States that are
often operated at full capacity. The issue of congestion at
these sectors is as critical as congestion in the terminal
areas, since the cost of holding an airborne aircraft is not
dependent on the location of the aircraft. Thus, airborne
delay costs could further be reduced if we could determine
the optimal time for a flight to traverse the capacitated
sectors. We first formulate the TFMP, examine the size of
the formulation and make the connection with the ground-
holding problem.

1.1. The 0-1 IP Formulation

Consider a set of flights, & = {1, ..., F}, a set of airports,
I ={1,..., K}, a set of time periods, 7 = {1,..., T},
and a set of pairs of flights that are continued, € =

{(f',f) : f is continued by flight f}. We shall refer to any
particular time period ¢ as the “time ¢.” The problem input
data are given as follows:

Data.

N; = number of sectors in flight f’s path,
the departure airport, ifi = 1,

the (i — 1)* sector in flight f’s path,
if1<i <N,

P(f, i) =

the arrival airport, if i = N,
D,(t) = departure capacity of airport k at time ¢,
A, (t) = arrival capacity of airport k at time ¢,
S,(t) = capacity of sector j at time ¢,
ds = scheduled departure time of flight f,
r; = scheduled arrival time of flight f,
sy = turnaround time of an airplane after flight f,
¢ = cost of holding flight f on the ground for one
unit of time,
c¢; = cost of holding flight fin the air for one unit of
time,
l; = number of time units that flight f must spend
in sector j,



Flight 1 Flight 2

Figure 2. Two possible flight routes.

T’ = set of feasible times for flight f to arrive to
sector j = [T, Tf]
= first time period in the set 7/, and

T/ = last time period in the set 7"

Note that by “flight,” we mean a “flight leg” between
two airports. Also, flights referred to as “continued” are
those flights whose aircraft is scheduled to perform a later
flight within some time interval of its scheduled arrival.

Objective. The objective in the TFMP is to decide how
much each flight is going to be held on the ground and in
the air in order to minimize the total delay cost.

We model the problem as follows.

Decision Variables.

i {1 if flight f arrives at sector j by time ¢,
Wf, = .

0 otherwise.
Note that the w}, are defined as being 1 if flight f arrives at

sector j by time t. This definition using by and not at is
critical to the understanding of the formulation. Also re-

call that we have also defined for each flight a list P,

including the departure airport, the pertinent sectors and
the arrival airport, so that the variable w}, will only be
defined for those elements j in the list P, Moreover, we
have defined T} as the set of feasible times for flight f to
arrive to sector j, so that the variable w/, will only be
defined for those times within T%. Thus, in the formulation
whenever the variable w/, is used, it is assumed that this is
a feasible (f, j, t) combination. Furthermore, one variable
per flight-sector pair can be eliminated from the formula-
tion by setting wj’cT; = 1. Since flight f has to arrive at
sector j by the last pos51ble time in its time window, we can
simply set it equal to one as a parameter before solving the
problem. To ensure the clarity of the model, consider the
following example which depicts two flights traversing a set
of sectors. (See Figure 2.)

In this example, there are two flights, 1 and 2, each with
the following associated data:

P,=(1,A4,C,D,E, 4) and
P,=(2,F,E, D, B, 3).
If we consider the current position of the aircraft to occur

at time ¢, then the variables for these flights at this time
will be:
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=1L,wh=1wl=0,wl=0wi=0,
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WZ,t - 17 WZ,I_ 17 WZ.I— 17 w2,t - 03 w2,t - 0’ W2,t - 0

Having defined the variables W), we can express several
quantities of interest as linear functions of these variables
as follows.

1. The variable u}, = 1 if flight f arrives ar sector j at
time ¢ and 0 otherwise, can be expressed as follows:

uh = wh — w},_, and vice versa, wj = > uj.. 1)
t'<t

As expressed earlier, the variables w}, are only defined in
the time range T} so that w}/_;,=0. Furthermore, the
constraint that a flight must arrive at sector j at some time
t, originally expressed by the restriction Z,eg/u}, 1 can
now be replaced by the simpler expression w}T; = 1. As pre-
viously mentioned, this can be handled as a parameter
before the problem is solved, thus eliminating many vari-
ables and constraints. This substitution is fundamental to
the performance of this model.

2. Noticing that the first sector for every flight represents
the departing airport, the total number of time units that
flight fis held on the ground can be expressed as the actual
departure time minus the scheduled departure time, i.e.,
gr = z tu ]I; —-d f

teTf k=P(f,1)
- 3

t€TF k=P(f,1)

t(wﬁ - Wﬁ,_l) - df.

3. Noticing that the last sector for every flight represents
the destination airport, the total number of time units that
flight f is held in the air can be expressed as the actual arrival
time minus the scheduled arrival time minus the amount of
time that the flight has been held on the ground, i.e.,
ar= X tug—rp—g;

1€TF k=P(f;Ny)
= 2

t€T}k=P(fNy)

t(w}f - wf’{,_l) —rr— gy

The Objective Function. The objective of the formulation
is to minimize total delay cost. Using the variables g, and
a; for the amounts of ground and air delay respectively, as
defined in items 2 and 3 above, the objective function can
be expressed simply as follows:
Min > lcfgr + cfay].
fe%

Substituting the expressions we derived in items 2 and 3
above for the variables w},, we obtain the following expres-
sion:

Min >, [c}’( >

twh—wh_1) — df)

fe# tETF k=P(f,1)
+ cj»‘( > twh—wf) — 1y
tETF k=P(f,Ny)
- ( > iwh-who) - df) ) ]
(ETH k=P(f,1)
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Rearranging variables, we can now present the objective
function along with the complete formulation.

(TFMP)
IZTFMpzMiI'l 2 [(C}q_cﬁ) E

fex (ETFk=P(f,1)

+cf >

t€T}k=P(f.Ny)

t(Wﬁ - W),‘(,t—])

t(Wﬁ - Wj,‘(.t—])

+(cf — efyds - c;rf]

subject to
S wk-whk_)<Dt) VkEX €T, 2
fTWh
fP(f1)=k
S wh-who)s=At) YKEH,1ET, (3
FP(fNp)=k
> (Wh—wh)<S;(t) VjE€E$ tET,
[P =]P(fi+1)=]"i<Ny
“4)
) . VFfEF, tEThL|=P(f i),
W%,HI - wﬁs 0 { . . . 5)
! Jj'=P(f,i+1),i<Ny
Y(f,f)ES, tETY
Wﬁt - Wﬁ,t—sf <0 { _ . , ! (6)
k=P(f, 1) =P(f', Np),
wh—who1=0 YfEF, jEP,tET )
whe{0,1} VfeF jeP,teT} (8)

The first three constraints take into account the capaci-
ties of various aspects of the system. The first constraint
ensures that the number of flights which may take off from
airport k at time ¢, will not exceed the departure capacity
of airport k at time ¢. Likewise, the second constraint en-
sures that the number of flights which may arrive at airport
k at time ¢, will not exceed the arrival capacity of airport k
at time ¢. In each case, the difference will be equal to one
only when the first term is one and the second term is zero.
Thus, the differences capture the time at which a flight
uses a given airport. The third constraint ensures that the
sum of all flights which may feasibly be in sector j at time
¢t will not exceed the capacity of sector j at time ¢. This
difference gives the flights that are in sector j at time ¢,
since the first term will be 1 if flight f has arrived in sector
j by time ¢ and the second term will be 1 if flight f has
arrived at the next sector by time ¢. So, the only flights that
will contribute a value of 1 to this sum are those flights
that have arrived at j and have not yet departed from j by
time ¢.

Constraints (5) represent connectivity between sectors.
They stipulate that if a flight arrives at sector j' by time
t + g, then it must have arrived at sector j by time # where
j and j' are contiguous sectors in flight fs path. In other
words, a flight cannot enter the next sector on its path until
it has spent /;; time units (the minimum possible) traveling
through sector j, the current sector in its path.

Constraints (6) represent connectivity between airports.
They handle the cases in which a flight is continued, i.e.,

the flight’s aircraft is scheduled to perform a later flight
within some time interval. We will call the first flight f and
the following flight f. Constraints (6) state that if flight f
departs from airport k£ by time ¢, then flight f must have
arrived at airport k by time ¢ — s,. The turnaround time, s,
takes into account the time that is needed to clean, refuel,
unload and load, and further prepare the aircraft for the next
flight. In other words, flight f cannot depart from airport %,
until flight f has arrived and spent at least s, time units at
airport k.

Constraints (7) represent connectivity in time. Thus, if a
flight has arrived by time ¢, then w,. has to have a value of
1 for all later time periods, ¢’ = .

Important Remark. The major reason we used the vari-
ables w%, as opposed to the variables u}, is that the former
variables nicely capture the three types of connectivity in
TFMP: connectivity between sectors, connectivity between
airports, and connectivity in time. Of course, given that the
two sets of variables are linearly related, the same constraints
can be captured using the u}, variables. We feel, however, that
the variables w}, not only take connectivity naturally into ac-
count, but also they define connectivity constraints that are
facets of the convex hull of solutions (see Section 3). As we
report in Section 4, the LP relaxation of (7FMP) is almost
always integral, i.e., the given formulation is a particularly
strong one. We believe that the key for this is the use of the
decision variables w}, in the formulation.

1.2. Size of the Formulation

Let D be the maximum cardinality of the set of feasible
times for flight f to be in sector j taken over all f and j,
ie.,
D= max_ |Tj.

fEF. JEP;
Let
X = max Ny,

feF
be the maximum number of sectors that a flight passes
through along its route, taken over all flights. Note that X =
2, since the departure and arrival airports are always counted
as sectors on a flight’s path. Let |%| be the total number of
flights, |7| be the total number of time periods, |%| be the
total number of airports, |$| be the total number of sectors,
and [6| be the total number of flights that are continued.

The actual number of variables w}, is 2y Y;cp, |7 since

each flight has a different number of sectors and number
of feasible time intervals associated with it. An upper
bound on the number of variables w}, will be

|F|DX.
The exact number of constraints is

2%1T] + [gllTI+2 2 2 |TH
fEF jeP,
+ 2 min {|T7|, |T#[}.
(f.frEe,

a=P(f, )=P(f.Ny)



An upper bound on the number of constraints can then
be calculated as

21T + |$|T| + 2|F|IDX + |€6|D.

In order to get a feeling of the size of the formulation,
let us consider an example that adequately represents the
U.S. network:

1. 9 = 20 representing the most congested airports in the
U.S.

2. 19| = 14 = 12 = 168, representing a 14 hour day with
five-minute intervals.

3. |$| = 200, representing 200 sectors.

4. |%| = 10000, representing approximately half of the
number of daily flights of major carriers.

5. |6] = 8000, representing an 80-percent connectivity
among flights.

6. D = 6, representing an upper bound of half an hour
that a flight can be late to any given sector.

7. X = 5, representing an upper bound of at most five
sectors in a flight’s path.

For this example the number of variables is at most
300,000 and the number of constraints is at most 688,320.
The critical quantities that significantly affect the number
of variables and constraints are D, X, and |%|. If for exam-
ple any of these parameters doubles, the number of vari-
ables doubles and the number of constraints nearly
doubles.

1.3. The Ground-Holding Problem as a Special Case

As mentioned in the introduction, the ground-holding
problem is a special case of the TFMP. If we remove the
sector capacity constraints and the variables associated
with the sectors, we obtain a new formulation of the
MAGHP which, as we demonstrate in Section 5, leads to
significant computational advantages compared to alterna-
tive formulations that have previously been proposed (see
the introduction). Notice that N, = 2 for all f € &, since a
flight’s path consists solely of the departure and arrival
airports.
Let us redefine the variables as:

yu = wj, for the departure airport, k = P(f, 1).
z;, = wy, for the arrival airport, k = P(f, 2).

Also, let T}’ be the set of feasible departure times for
flight f, and let 77 be the set of feasible arrival times for
flight f.

Using the new variables, the formulation (TFMP) spe-
cializes to the following new formulation of (MAGHP):

(MAGHP)

[Zyagup = Min 3, [(cﬁ —¢f) 2t = Vg1
feF teTf

+ C;fz 2 t(Zf, _Zf,t—l)
teT}

+ (cf — cfydy — c;rf],
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subject to
2 g —yu-1) <SDi(t) VkeEN, tET, 9)
fuety
> (zp—zp) <A() VkeEN, tET, (10)
fiEeTf
Zf = Vpe-,-4) <0 VfEF, 1ET], (11)
Vie = Zf s, <0 V(f’,f)E‘@,tET}”, (12)
Vi Y1 =0 VfeF 1eTf, (13)
zp — 2z =0 VEF €T, (14)

Vi, 2 €10,1} VfEF €.

The first two constraints incorporate the capacity restric-
tions of the departure and arrival airports. The next con-
straint is the sector connectivity constraint, which is
equivalent to constraint (5) in the TFMP formulation.
However, for the ground-holding problem the only ele-
ments in the path are the departure airport and the arrival
airport. So this constraint connects these two elements by
making sure that flight f cannot arrive at time ¢ unless it
has departed by at least t minus the minimum flight time.
The next constraint is the flight connectivity constraint,
which is equivalent to constraint (6) in the TFMP formu-
lation. The last two constraints are time connectivity con-
straints, which are equivalent to constraint (7) in the
formulation (TFMP).

Using the previous definitions, an upper bound on the
number of variables is 2|%|D, and an upper bound on the
number of constraints is 2|%||T| + 3|%|D + |€|D. For the
same example as in the end of the previous subsection, an
upper bound on the number of variables in the above
formulation is 120,000 and an upper bound on the number
of constraints is 234,720.

If we remove the constraint (12) and consider the set
J to be the singleton set, then we have a valid formu-
lation for SAGHP, which we will call (SAGHP). We
define the feasible regions for the formulations (TFMP),
(MAGHP), and (SAGHP) as IPrpyp, IPpqcups and
1P :up, TESPECtively.

The variables used in the formulation in Vranas et al.
(1994a) are defined differently: u, = 1 if flight f takes off
at time ¢ and v, = 1 if flight f arrives at time ¢. These are
linearly related to variables y, and z;, as per the relation-
ship given by (1). As already mentioned, the ground-
holding delays can be expressed in terms of these variables
in the following manner:

gf= 2 tuf, _df’ (15)

teTY

as can the airholding delay,

af= 2 tvf,—rf—gf. (16)
teTf

In Vranas et al. (1994a), it is assumed that when the de-

parture capacity is large, without loss of generality, a, = 0,

thus implying that all of the delay would be taken on the
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ground before departure. This gives an equivalent expres-
sion for g as, gr = Z,eqy tv, — rp which contains no
departure information, thus eliminating the variables uj
from the formulation. Moreover, instead of the flight con-
nectivity constraints (12), the following constraints,

9r —dyp=sp —rp) =gy (17)
establish connectivity between the arriving flight f and the
departing flight f by forcing the amount of ground-hold for
flight fto be at least the amount that flight f* arrives late, g,
minus the amount of slack time, d; - Sp = rIp. The description
of the feasible space in Vranas et al. (1994a) expressed in the
2, space as per the relationship (1) is as follows:

IPypo = {Zﬁ e {0, 1}‘2 (zf = zp0-1) < Ay (1),
f

E (th - zf,z—l) =1,

€T

95 = > t(z = zp-1) — 1y,
1T}

gy —dp—sp —rp) S gp zp — 21 = 0}.

Terrab and Paulose (1993) use the same variables, v as
in Vranas et al. (1994a). However, they express the flight
connectivity constraints as follows:

> vp - > vpr < 0. (18)

tET{ AT VET! V' <T—57 —(r;—dy)
Constraint (18) forces connectivity, since if the second sum
is zero then flight f has not landed by time 1 — s, — (r; —
dy), which is time period 7 minus the turnaround time,
minus the flight time of f. This forces the first sum to be
zero so that flight f can not land before time 7. The de-
scription of their formulation expressed in the z;, space as
per the relationship (1) is:

P = {zﬁ e {0, 1}' S (zp = zp0) < Ar(),
f

> (zp—zpe) =1, 2
teTy (€T} 1<7
- >

I'ET}‘,t'$T—Sf —(rr—dy)

(zp = zg-1)

(zpr —zpp-1) <0,

th _zf,t—l = 0}.

If we specialize our formulation for the case of large de-
parture capacities and use only the variables, z,(y, =
zf,,+(,f#df)), we obtain:

IPyagup = {th €10, 1} 2 (zp — zp-1) < Ag(0),

feTf

Z (th _Zf,t—l) =1,

T}

Zfuri,-d) ~ Zpa-s, <0,

Zf’, - Zf,t—l = 0}

In all of these formulations, the expression Z,erfa (zp —
z;,—1) = 1 reduces to the expression z57, = 1. This tele-
scoping property is due to the unique definition of the
decision variables as flights arriving by some time ¢ rather
than at time ¢.

If we denote the polyhedra corresponding to the linear
programming relaxations of 1P, ;up, IPygo, and IP,p as
Piragup, Pyso, and Prp and denote their corresponding
values as Zyugur, Zygo» and Z;p, then we can state the
following proposition whose proof is included in Appendix
A

Proposition 1. IPrp = IPygo = IPyucur © Pyacur C

Prp C Pypo, and correspondingly, Z g < Z1p < Ziyiacup
< 1Zyagup = 1Zypo = 1Z1p.

Therefore, the LP relaxation of (MAGHP) gives bounds
that are at least as strong as those from the LP relaxations
of either Vranas et al. (1994a) or Terrab and Paulose
(1993).

2. COMPLEXITY OF THE TFMP

In this section we show that the TFMP is an NP-hard
problem.

Theorem 1. The TFMP with all capacities equal to 1 is
NP-hard.

Proof. We show that job-shop scheduling (see Garey and
Johnson 1979) reduces to TFMP.

JOB SHOP SCHEDULING PROBLEM (JSP)
INSTANCE: Number m € Z* of processors, set J of jobs,
each j € J consisting of an ordered collection of tasks #,[f],
1 < k < n;, for each task ¢ a length I(r) € Z; and a
processor p(t) € {1, 2,..., m}, where p([j]) #
P(tiq[j]) forall j € Jand 1 < k < n;, and a deadline D €
VAR
QUESTION: Is there a job-shop schedule for J that meets
the overall deadline, i.e., a collection of one-processor
schedules o; mapping {¢ : p(¢t) = i} into Zj, 1 <i < m,
such that o;(t) > oy(t') implies o;(t) = oy(t') + I(t), such
that 0;.(t1[/1) = ou(tels]) + I(tlj]) where i' = p(t.1[/])
and i = p(#[/]), for all j € J and 1 < k < n;, and such that
for all j € J, ay(t, [j]) + I(t,.[j]) < D where i = p(¢,[j])?
For each job we create an aircraft. For each proc/essor
we associate an airport or sector. Task #,[j] of job j corre-
sponds to a flight segment, fi[j] of aircraft j. Given a
collection of tasks, #,[j] of job j, we associate a list of
airports and sectors to be visited by aircraft j. Further-
more, the processing time of task #,[j] corresponds to the
time required to perform the flight segment, f,[j]. We

obtain a list of airports and sectors, (4;, S7,..., A},
S, ..., A7), and a list of the flight segment times, (£,
£, .., th, 0571 .., £f), for each aircraft j by the rela-

tionships:



Al =p@1D, i =1001D)
S],z =p(t,[2]), tgj = l(t][z])
S} =pW[3D, 13 =1(;[3])

A =p@ln;D), i =1 n;]).

So by finding a job-shop schedule that satisfies the given
conditions, we will find a solution to the transformed prob-
lem such that all flights are performed by the deadline D.
Also, according to the relationship o;(f;1[j]) = oyt ] +
It [j]) where i" = p(t,,1[j]) and i = p([j]), no two tasks will
ever performed simultaneously on the same processor, which
is equivalent to limiting the capacities of airports and sectors
to one. Moreover, the relationship, oy(f) > o,(¢') implies o;(¢)
= gy(t') + l(r), dictates that a task can not be processed
unless the previous task has completed. This stipulation
guarantees connectivity between flights, and secto